Funding

Self-funded

Project code

SMDE4590220

Department

School of Electrical and Mechanical Engineering,

Start dates

October, February and April

Application deadline

Applications accepted all year round

Applications are invited for a self-funded 3-year PhD.

The PhD will be based in the Faculty of Technology, and will be supervised by Dr Afshin Anssari-BenamDr Andrea Bucchi and Dr Martino Pani.

The work on this project involves:

  • Quantifying deformations endured by the semilunar valves during their function using a range of in vivo and in vitro techniques
  • Quantifying the ensuing deformation rates
  • Quantifying the rate effects on the mechanical behaviour of the valves at physiological and pathophysiological conditions versus the general testing conditions in vitro performed in labs
  • The in vivo and in vitro techniques will be developed based on real-time patient-specific images of valves’ opening and closure, as well as multi camera digital volume correlation in conjunctions with bioreactors mounted with valves

In a series of recent publications, the supervisory team has demonstrated that the mechanical behaviour of semilunar heart valves is rate-dependent. Therefore, a correct understanding of the true mechanical behaviour of the semilunar valves, and thereby developing appropriate computational models and improved (bio)prosthetic valve designs crucially relies on an accurate quantification of the deformation characteristics of the valves in vivo, particularly the true physiological deformation rates and the actual amount by which the valves deform.

The PhD programme involves quantifying: 1- Deformations endured by the semilunar valves during their function using a range of in vivo and in vitro techniques; 2- The ensuing deformation rates; and 3- The rate effects on the mechanical behaviour of the valves at physiological and pathophysiological conditions versus the general laboratory testing conditions. The in vivo and in vitro techniques will be developed based on clinical patient-specific images of valves and multi camera digital volume correlation (MCDVC) of valve function within a custom-designed bioreactor. 

This project will be carried out in a close collaboration with ºÚÁϳԹÏHospitals NHS Trust and the Heart Science Centre, National Heart and Lung Institute (NHLI), Imperial College.

The successful candidate will be based at the Cardiovascular Engineering Research Laboratory (CERL), but expected to spend time at the collaborating hospital to develop the imaging protocols and acquire the images, as well as the NHLI for setting up the MCDVC system with the bioreactor. Clinical supervision will be provided by the collaborating hospital, and the activities at the NHLI will be supervised by Dr. Adrian Chester. 

Fees and funding

Visit the research subject area page for fees and funding information for this project.

Funding availability: Self-funded PhD students only. 

PhD full-time and part-time courses are eligible for the  (UK and EU students only).

Entry requirements

You'll need an upper second class honours degree from an internationally recognised university or a Master’s degree in an appropriate subject. In exceptional cases, we may consider equivalent professional experience and/or qualifications. English language proficiency at a minimum of IELTS band 6.5 with no component score below 6.0.

You should have a strong background in biomechanics, mechanical engineering or a closely related field. Previous experience in mechanical testing of soft tissues and programming in MATLABis desirable.

How to apply

We’d encourage you to contact Dr Afshin Anssari-Benam at afshin.anssari-benam@port.ac.uk to discuss your interest before you apply, quoting the project code.

Apply

When you are ready to apply, please follow the 'Apply now' link on the Mechanical and Design Engineering PhD subject area page and select the link for the relevant intake.

If you want to be considered for this self-funded PhD opportunity you must quote project code SMDE4590220 when applying.