Biography

Dr. Bennett Au obtained his bachelor degree in Applied Biology and PhD from City University of Hong Kong in 2012 and 2019, respectively. After graduation, he continued to work at City University of Hong Kong as a post-doctoral fellow with Prof. Eddie Ma, and made seminal contribution to identify various bioactive small molecules that promoted robust axon regeneration after CNS injuries. Such unprecedented degree of axon regeneration induced by these small molecules not only restored the neural activity at the distal brain target (i.e. superior colliculus) upon stimulation, but also promoted visual functional recovery after optic nerve injuries in mice. His research findings were published in a prestigious journal Proceedings of the National Academy of Sciences (PNAS), and has been featured in press release at international level including platforms such as ScienceDaily, News Medicals, Neuroscience News, as well as various local media in Hong Kong. In the recognition of his research achievement, he was a recipient of Research Tuition Scholarship and Outstanding Academic Performance Award for two consecutive years in 2016 and 2017, and Best Poster Award in various conferences. He joined the ºÚÁϳԹÏ, School of Pharmacy and Biomedical Sciences as a Lecturer in 2023. Currently, he serves as a Review Editor in Frontiers of Molecular Medicine and Frontiers in Neurology, and was a Guest Associate Editor in Frontiers in Aging Neuroscience and Frontiers in Neurology.

Research interests

The intrinsic regenerative capacity of mature CNS neurons is very limited. The presence of growth-inhibitory barriers in the extrinsic microenvironment further limited axon regeneration beyond the lesion after CNS injuries. In contrast, peripheral axons readily regrow at an extremely slow rate (1-2mm/day) after peripheral nerve injuries (PNIs). However, these injured peripheral axons require regeneration over long distance to reinnervate their original distal targets at the neuromuscular junctions for motor functional recovery in patients with proximal PNI (e.g. brachial plexus injury). By the time when injured axons finally reach their muscle targets, they fail to form functional synapses due to chronic denervation and muscle atrophy. This accounts for the poor functional outcomes in those patients even after immediate surgical repair.

My primary research goal is to identify key regulators that contribute to successful axon regeneration after PNS and CNS injuries, respectively. Using a multidisciplinary approach spanning from cell biology, molecular biology, systems biology, immunohistochemistry, animal behavioral assessments, electrophysiology, and optogenetics, my lab aims to unravel novel key molecular signaling pathways that are required for robust axon regeneration and functional recovery after nervous system injuries. Ultimately, we hope our research could pave the way towards the development of novel therapeutic interventions to address this unmet medical need for effective nerve repair

Currently, I am seeking for highly motivated self-funded PhD students and MRes students to join my team. You might find the following link for the project details of our self-funded PhD program and MRes program for peripheral neuropathy or neuroregeneration.

Research outputs

2024

Au, N. P. B., Chen, X., Gan, Y., Ma, C. H. E.

10 Apr 2024, In: Frontiers in Molecular Neuroscience. 17, 19p., 1345811

Au, N. P. B., Chan, K. W. Y., Chan, S. L., Jin, Y., Kumar, G., Lai, J. H. C., Li, Y. Y. T., Ma, C. H. E., Wang, X., Wu, T., Yu, K. N.

1 Jan 2024, In: Brain, Behavior, and Immunity. 115, 21p.

2023

Au, N. P. B., Chen, X., Coppola, G., Gao, F., Geschwind, D. H., Li, Y. T. Y., Ma, C. H. E., Tam, W. Y., Wang, X., Wu, T., Yu, K. N.

11 Dec 2023, In: Neuron